
Оглавление:
2025 Автор: John Day | [email protected]. Последнее изменение: 2025-01-23 15:04

Это украшение Хэллоуина: изображение призрака с динамическим контролем силы света. На видео выше вы можете видеть его справа. Он установлен в нашем окне вместе с другими моими проектами: «Луна с силуэтом летучей мыши» и «Тыква».
Запасы
- Две светодиодные гибкие силиконовые неоноподобные светодиодные ленты длиной 1 метр Ice Blue (adafruit.com).
- Четыре больших модуля светодиодной подсветки белого цвета (adafruit.com).
- Микроконтроллер Attiny85 (любой поставщик электроники).
- LM2596 DC-DC понижающий преобразователь с выходом источника питания 1,23–30 В для понижающего модуля (Amazon).
- Транзистор NTE196 NPN (Fry's).
- Четыре резистора 110 Ом 0,25 Вт.
- Один резистор 270 Ом 0,25 Вт.
- Макетная плата, немного провода, коллекторы, термоусадочные трубки, лист Элмера из черной пены, немного картона.
- Электропитание: 110 В переменного тока - 12 В постоянного тока (выход> = 2 А).
Шаг 1: Схема

Питается проект от блока питания 12 В постоянного тока (выхода 2 А более чем достаточно). Для питания светодиодных лент требуется 12 В. Модули микросхемы и подсветки питаются от 5 В, которое вырабатывается из 12 В понижающим модулем питания на базе LM2596. Attiny85 напрямую управляет светодиодными модулями подсветки. Выходной мощности микросхемы недостаточно для управления полосами, поэтому я добавил транзистор NPN (NTE196 здесь слишком мощный, но это только то, что я смог найти в местном магазине Fry. Думаю, подойдет любой транзистор NPN с выходным током> 1,6 А).
Шаг 2: Монтаж схемы


Чтобы сэкономить время на пайку, я смонтировал схему на макетной плате. Обратите внимание на адаптер, изготовленный на заказ (на фото около 25-го ряда). Он позволяет прикрепить 6-контактный разъем AVRISP II к макетной плате.
22.03.2021 / Обновление.
Компоненты перенесены с экспериментального макета на макет Adafruit Perma-Proto размером 1/4, окончательно спаяв их.
Шаг 3: Делаем тело

Гибкие светодиодные ленты, расположенные на плате Элмера, образуют тело-призрак. Затем с помощью шила проделал отверстия в плате и продвинул проволочные петли через отверстия, прикрепив полосы к плате.
Шаг 4: Создание элементов лица

Крепление лицевых элементов я сделал из картона в виде трехслойного бутерброда. На фото средний элемент. Он содержит отверстие для подключения модулей подсветки. Другой слой - простой кусок картона сзади: оба скреплены проволокой. Передний слой на самом деле представляет собой пенопластовую доску Элмера с уже прикрепленным телом-призраком. Я вырезал там отверстие для глаз и рта и прикрепил лицевой модуль к плате проволочными петлями. Провода светодиодов, а также провода для зачистки я вставил в соответствующие отверстия на макетной плате.
Шаг 5: программирование

Программа написана на языке C и скомпилирована с помощью AVR Studio 7. Studio позволила мне подключиться к чипу Attiny85 через интерфейсное устройство AVRISPII, очистить значение предохранителя CKDIV8 для повышения частоты контроллера до 8 МГц и загрузить программу в память чипа.. Исходный код, а также дополнительные материалы доступны:
Шаг 6: Название проекта

Теперь проект закончен. Я сделал это после дружелюбного призрака Каспера, но когда я закончил с ним, пришел ответ, что он не столько похож на Каспера, сколько на человека из картины Эдварда Мунка «Крик». Да будет так. Назовем этот проект «Крик».
Рекомендуемые:
Как: установка Raspberry PI 4 Headless (VNC) с Rpi-imager и изображениями: 7 шагов (с изображениями)

Как: установка Raspberry PI 4 Headless (VNC) с Rpi-imager и изображениями: я планирую использовать этот Rapsberry PI в кучу забавных проектов еще в моем блоге. Не стесняйтесь проверить это. Я хотел вернуться к использованию своего Raspberry PI, но у меня не было клавиатуры или мыши в моем новом месте. Прошло много времени с тех пор, как я установил Raspberry
Счетчик шагов - Micro: Bit: 12 шагов (с изображениями)

Счетчик шагов - Микро: Бит: Этот проект будет счетчиком шагов. Мы будем использовать датчик акселерометра, встроенный в Micro: Bit, для измерения наших шагов. Каждый раз, когда Micro: Bit трясется, мы добавляем 2 к счетчику и отображаем его на экране
Bolt - Ночные часы с беспроводной зарядкой своими руками (6 шагов): 6 шагов (с изображениями)

Bolt - Ночные часы с беспроводной зарядкой своими руками (6 шагов): Индуктивная зарядка (также известная как беспроводная зарядка или беспроводная зарядка) - это тип беспроводной передачи энергии. Он использует электромагнитную индукцию для обеспечения электропитания портативных устройств. Самым распространенным применением является беспроводная зарядка Qi st
Как разобрать компьютер с помощью простых шагов и изображений: 13 шагов (с изображениями)

Как разобрать компьютер с помощью простых шагов и изображений: это инструкция о том, как разобрать компьютер. Большинство основных компонентов имеют модульную конструкцию и легко снимаются. Однако важно, чтобы вы были организованы по этому поводу. Это поможет уберечь вас от потери деталей, а также при повторной сборке
Проектирование печатной платы с помощью простых и легких шагов: 30 шагов (с изображениями)

Проектирование печатных плат с помощью простых и легких шагов: ПРИВЕТ, ДРУЗЬЯ Это очень полезное и легкое руководство для тех, кто хочет изучить дизайн печатных плат. Давайте начнем