Оглавление:

Измерение давления с помощью CPS120 и Particle Photon: 4 шага
Измерение давления с помощью CPS120 и Particle Photon: 4 шага

Видео: Измерение давления с помощью CPS120 и Particle Photon: 4 шага

Видео: Измерение давления с помощью CPS120 и Particle Photon: 4 шага
Видео: Учебное пособие по датчику давления и температуры Arduino Nano CPS120 2024, Ноябрь
Anonim
Image
Image

CPS120 - это высококачественный и недорогой емкостный датчик абсолютного давления с полностью компенсированным выходом. Он потребляет очень мало энергии и состоит из сверхмалого микроэлектромеханического датчика (МЭМС) для измерения давления. В нем также реализован сигма-дельта АЦП для выполнения требований скомпенсированного выхода.

В этом руководстве было проиллюстрировано взаимодействие сенсорного модуля CPS120 с фотоном частицы. Для считывания значений давления мы использовали фотон с адаптером I2C. Этот адаптер I2C делает подключение к модулю датчика простым и надежным.

Шаг 1: Требуемое оборудование:

Требуемое оборудование
Требуемое оборудование
Требуемое оборудование
Требуемое оборудование
Требуемое оборудование
Требуемое оборудование

Материалы, которые нам нужны для достижения нашей цели, включают следующие компоненты оборудования:

1. CPS120

2. Частичный фотон

3. Кабель I2C

4. I2C Shield для фотонов частиц

Шаг 2: Подключение оборудования:

Подключение оборудования
Подключение оборудования
Подключение оборудования
Подключение оборудования

Раздел подключения оборудования в основном объясняет проводные соединения, необходимые между датчиком и фотоном частицы. Обеспечение правильных соединений является основной необходимостью при работе с любой системой для достижения желаемого результата. Итак, необходимые подключения следующие:

CPS120 будет работать по I2C. Вот пример схемы подключения, демонстрирующий, как подключить каждый интерфейс датчика.

Изначально плата настроена для интерфейса I2C, поэтому мы рекомендуем использовать это подключение, если вы не сторонник этого. Все, что вам нужно, это четыре провода!

Требуются только четыре соединения, выводы Vcc, Gnd, SCL и SDA, которые подключаются с помощью кабеля I2C.

Эти соединения показаны на рисунках выше.

Шаг 3: Код для измерения давления:

Код для измерения давления
Код для измерения давления

Начнем с кода частицы.

При использовании сенсорного модуля с Arduino мы включаем библиотеки application.h и spark_wiring_i2c.h. Библиотека application.h и spark_wiring_i2c.h содержит функции, которые облегчают обмен данными i2c между датчиком и частицей.

Полный код частицы приведен ниже для удобства пользователя:

#включают

#включают

// Адрес I2C CPS120 0x28 (40)

#define Addr 0x28

двойная температура = 0,0, давление = 0,0;

установка void ()

{

// Устанавливаем переменную

Particle.variable («i2cdevice», «CPS120»);

Particle.variable («давление», давление);

Particle.variable («температура», температура);

// Инициализируем связь I2C как МАСТЕР

Wire.begin ();

// Инициализируем последовательную связь, устанавливаем скорость передачи = 9600

Serial.begin (9600);

}

пустой цикл ()

{

данные типа int без знака [4];

// Запуск передачи I2C

Wire.beginTransmission (адрес);

задержка (10);

// Остановка передачи I2C

Wire.endTransmission ();

// Запрос 4 байта данных

Wire.requestFrom (Адрес, 4);

// Читаем 4 байта данных

// давление msb, давление lsb, temp msb, temp lsb

если (Wire.available () == 4)

{

данные [0] = Wire.read ();

данные [1] = Wire.read ();

данные [2] = Wire.read ();

данные [3] = Wire.read ();

}

// Преобразуем значения

давление = ((((данные [0] & 0x3F) * 265 + данные [1]) / 16384.0) * 90.0) + 30.0;

cTemp = ((((данные [2] * 256) + (данные [3] & 0xFC)) / 4.0) * (165.0 / 16384.0)) - 40.0;

fTemp = cTemp * 1,8 + 32;

// Выводим данные в дашборд

Particle.publish («Давление есть:», Строка (давление));

задержка (1000);

Particle.publish («Температура в градусах Цельсия:», String (cTemp));

задержка (1000);

Particle.publish («Температура по Фаренгейту:», String (fTemp));

задержка (1000);

}

Функция Particle.variable () создает переменные для хранения выходных данных датчика, а функция Particle.publish () отображает выходные данные на панели инструментов сайта.

Выходной сигнал датчика показан на рисунке выше для справки.

Шаг 4: Приложения:

Приложения
Приложения

CPS120 имеет множество приложений. Его можно использовать в портативных и стационарных барометрах, высотомерах и т. Д. Давление является важным параметром для определения погодных условий, учитывая, что этот датчик может быть установлен и на метеостанциях. Его можно использовать как в системах контроля воздуха, так и в вакуумных системах.

Рекомендуемые: